Experimental and regional variations in Na+‐dependent and Na+‐independent phosphate transport along the rat small intestine and colon
نویسندگان
چکیده
Despite the importance of extracellular phosphate in many essential biological processes, the mechanisms of phosphate transport across the epithelium of different intestinal segments remain unclear. We have used an in vitro method to investigate phosphate transport at the brush border membrane (BBM) of intact intestinal segments and an in vivo method to study transepithelial phosphate absorption. We have used micromolar phosphate concentrations known to favor NaPi-IIb-mediated transport, and millimolar concentrations that are representative of the levels we have measured in luminal contents, to compare the extent of Na(+)-dependent and Na(+)-independent phosphate transport along the rat duodenum, jejunum, ileum, and proximal and distal colon. Our findings confirm that overall the jejunum is the main site of phosphate absorption; however, at millimolar concentrations, absorption shows ~30% Na(+)-dependency, suggesting that transport is unlikely to be mediated exclusively by the Na(+)-dependent NaPi-IIb co-transporter. In the ileum, studies in vitro confirmed that relatively low levels of phosphate transport occur at the BBM of this segment, although significant Na(+)-dependent transport was detected using millimolar levels of phosphate in vivo. Since NaPi-IIb protein is not detectable at the rat ileal BBM, our data suggest the presence of an as yet unidentified Na(+)-dependent uptake pathway in this intestinal segment in vivo. In addition, we have confirmed that the colon has a significant capacity for phosphate absorption. Overall, this study highlights the complexities of intestinal phosphate absorption that can be revealed using different phosphate concentrations and experimental techniques.
منابع مشابه
Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
In a study of the rat intestinal P(i) transport system, an activator protein for rat Na/P(i) co-transport system (PiUS) was isolated and characterized. We also investigated the effects of restriction of vitamin D and P(i) (two of the most important physiological and pathophysiological regulators of P(i) absorption in the small intestine) on intestinal P(i) transport activity and the expression ...
متن کاملContributions of different NaPi cotransporter isoforms to dietary regulation of P transport in the pyloric caeca and intestine of rainbow trout.
The anatomical proximity and embryological relationship of the pyloric caeca (PC) and small intestine of rainbow trout has led to the frequent assumption, on little evidence, that they have the same enzymes and transporters. In trout, the PC is an important absorptive organ for dietary nutrients, but its role in dietary P absorption has not been reported. We found that apical inorganic phosphat...
متن کاملRenal and small intestinal sodium-dependent symporters of phosphate and sulphate.
Homeostasis of inorganic phosphate (P(i)) and sulphate (Si) is largely achieved by absorption in the mammalian small intestine and by reabsorption in the proximal tubule of the kidney. Under normal physiological conditions, the kidney appears to play the major role in maintaining the extracellular concentration of these anions. In both epithelia, reabsorption of P(i) and to some extent also of ...
متن کاملRegulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine.
The Na(+)-P(i) cotransporter NaPi-IIb (SLC34A2) has been described to be involved in mouse small intestinal absorption of P(i) and to be regulated by a number of hormones and metabolic factors. However, a possible segmental expression of NaPi-llb in small intestine has not been addressed so far. Here, we describe that the NaPi-IIb cotransporter is highly abundant in the ileum of mouse small int...
متن کاملMechanisms of intestinal phosphate transport in small ruminants.
In order to study the localization and mechanisms of intestinal phosphate transport in sheep and goats, unidirectional inorganic phosphate (Pi) flux rates across isolated stripped epithelial tissues were measured in vitro by applying the Ussing-chamber technique. In the first experiment the tissues were obtained from animals which had been kept on an adequate dietary P supply. In the second exp...
متن کامل